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Abstract. In this paper, through an exhaustive analysis within the Migdal-Eliashberg theory, we show the
incompatibility of experimental data of Rb3C60 with the basic assumptions of the standard theory of su-
perconductivity. For different models of the electron-phonon spectral function α2F (Ω) we solve numerically
the Eliashberg equations to find which values of the electron-phonon coupling λ, of the logarithmic phonon
frequency Ωln and of the Coulomb pseudopotential µ∗ reproduce the experimental data of Rb3C60. We
find that the solutions are essentially independent of the particular shape of α2F (Ω) and that, to explain
the experimental data of Rb3C60, one has to resort to extremely large couplings: λ = 3.0 ± 0.8. This
results differs from the usual partial analyses reported up to now and we claim that this value exceeds
the maximum allowed λ compatible with the crystal lattice stability. Moreover, we show quantitatively
that the obtained values of λ and Ωln strongly violate Migdal’s theorem and consequently are incompat-
ible with the Migdal-Eliashberg theory. One has therefore to consider the generalization of the theory of
superconductivity in the nonadiabatic regime to account for the experimental properties of fullerides.

PACS. 74.70.Wz Fullerenes and related materials – 74.20.-z Theories and models of superconducting state
– 63.20.Kr Phonon-electron and phonon-phonon interaction

1 Introduction

In contrast to the cuprates, the other family of high-
Tc superconductors, the fullerene compounds, shows a
quite more conventional phenomenology: their normal
state properties are Fermi liquid-like, no stripe forma-
tion or signal of pseudogap appear above Tc, they are
s-wave superconductors with a sizeable carbon isotope ef-
fect [1]. It is certainly due to their apparently ordinary
phenomenology that superconductivity in C60 materials is
now often assumed to be correctly described by the con-
ventional Migdal-Eliashberg (ME) theory of the electron-
phonon driven superconductivity [2,3]. The relatively high
critical temperatures of the A3C60 fullerene compounds
(up to Tmax

c = 40 K for Cs3C60 under pressure [4]) are
therefore generally thought to be due to an optimized
electron-phonon interaction achieved, according to the dif-
ferent proposed explanations, by a large electron coupling
to the alkali phonons [5], to the C60 rotational modes [6],
or by the so-called curvature argument for the intramolec-
ular couplings [7,8]. According to this latter theory, the
electron-phonon coupling steadily increases with the cur-
vature of the fulleride molecule so that compounds with
smaller molecular radius (C36, C28) are expected to have
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critical temperatures even higher than those of the C60-
based materials [9].

The above theories disregard however several aspects
of the phenomenology of the fullerene compounds which
do not fit into the standard ME scenario. In fact, like
the high-Tc copper-oxides, the fullerene compounds have
extremely low charge carrier densities [10], have signifi-
cant electron correlation [1,11], and are close to a metal-
insulator transition [12,13] showing a strong dependence
of Tc upon doping [14] and disorder [15]. From a ME point
of view, these features tend to degrade the superconduct-
ing state so that it appears difficult to understand why the
fullerene compounds should represent the best optimized
ME materials.

In this situation, it should be therefore of primary im-
portance to assess to which extend the experimental data
can be explained by the ME theory. This issue has been
even more highlighted by the recent discovery of super-
conductivity with Tc = 52 K in FET hole doped C60 [16].
Until recently, however, the spread of experimental results
has prevented a detailed and definitive analysis. Neverthe-
less, in the last years, the experimental uncertainty for the
alkali fullerene compound Rb3C60, which shows the high-
est critical temperature at room pressure Tc = 30 K within
the A3C60 family, has been considerably narrowed.
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In fact, resistive measurements on 99% enriched 13C
single-crystals have recently established the carbon iso-
tope coefficient αC with the best up-to-date accuracy,
αC = 0.21 ± 0.012 [17], resolving therefore a long stand-
ing uncertainty on the value of αC in fullerides mainly
due to partial isotope substitution and/or magnetic mea-
surements on powder samples with broad transitions of-
ten wider than the isotope shift itself [1,17]. In addi-
tion, crossed tunneling and optical transmission studies
on the same sample have provided accurate measure-
ments of the zero temperature energy gap 2∆ leading to
2∆/Tc = 4.2± 0.2 [18]. This result is more accurate than
previous spectroscopic studies and agrees with NMR and
photoemission measurements [19,20], moreover it has been
obtained by both bulk- (optical transmission) and surface-
(tunneling) sensitive measurements which have given of-
ten contrasting results.

Although we shall briefly consider also other estima-
tions existing in literature, in this paper we mainly focus
on the above reported experimental data. The main point
in fact is that these data are supplemented by quite small
error bars, which permit a more rigorous analysis, We shall
show however that different determinations of the data, in
particular of the superconducting gap, would even more
substain the results presented in this paper.

The experimental values above discussed seem, at first
sight, perfectly compatible with the ME theory. For ex-
ample, Tc = 30 K is not far from Tc = 23.2 K of Nb3Ge
and 2∆/Tc = 4.2 ± 0.2 is very close to 4.18 and 4.25 of
V3Ga and Nb3Al(2), respectively [21]. Finally, the carbon
isotope coefficient αC = 0.21 is similar to the isotope ef-
fects of the elemental ME superconductors Os (α = 0.2)
and Mo (α = 0.33) [22]. The apparently ordinary values
of Tc, αC, and 2∆/Tc, independently considered, could
therefore be used as arguments in favour of the validity
of the ME theory for Rb3C60. However, each of this val-
ues has little meaning if taken individually. For example,
in reference [18] the experimental data Tc = 30 K and
2∆/Tc = 4.2, but not αC = 0.21, have been fitted by set-
ting λ = 1.16, µ∗ = 0.1, and Ωln = 302 K, while in refer-
ence [17] Tc = 30 K and αC = 0.21, but not 2∆/Tc = 4.2,
have been fitted by λ = 0.9, µ∗ = 0.22, and Ωln = 1360 K.
Although the discrepancies in the values of λ and µ∗ are
somehow acceptable, the two values of Ωln differ by a fac-
tor of five.

A previous partial analysis, based only on the values
of the critical temperature Tc = 30 K and of the iso-
tope coefficient αC = 0.21, has pointed out an intrin-
sic inconsistency of the ME framework with respect of
the adiabatic assumption [23]. In this paper we extend
this study by taking into account also the estimation of
the superconducting gap 2∆/Tc = 4.2 and by consider-
ing realistic electron-phonon interactions related both to
inter- and intra- molecular modes. We show that the ex-
perimental data of Rb3C60, when analyzed in the con-
text of the fullerene compounds, Tc = 30 K, αC = 0.21
and 2∆/Tc = 4.2 are actually incompatible with the stan-
dard ME framework. We accomplish this task in Section 3
by considering different models of the electron-phonon

interaction and by numerically solving the ME equation in
order to reproduce the experimental data. We find in Sec-
tion 4 that the resulting values of the electron-phonon in-
teraction are always far too large to avoid lattice instabili-
ties and to neglect the electron-phonon vertex corrections
beyond Migdal’s limit, as required by the ME formulation
[2,3]. Finally, in Section 5 we propose that the main origin
of the failure of the ME framework lies in the breakdown
of the adiabatic hypothesis (Migdal’s theorem) which, in
doped fullerenes, is naturally driven by the small value of
the Fermi energy.

2 The Migdal-Eliashberg equations

As pointed out in the introduction, the superconducting
state of the fullerene compounds is quite often regarded in
terms of the ME theory. Since the alkali doped fullerenes
are three dimensional s-wave superconductors, the super-
conducting properties are therefore thought to be cor-
rectly described by the standard ME equations [3,21]:

Z(iωn) = 1 +
πT

ωn

∑
m

∫ ∞
0

dΩ
α2F (Ω) 2Ω

Ω2 + (ωn − ωm)2

× ωm√
ω2
m +∆(iωm)

, (1)

Z(iωn)∆(iωn) = πT
∑
m

[ ∫ ∞
0

dΩ
α2F (Ω) 2Ω

Ω2 + (ωn − ωm)2

− µ θ(ωc − |ωm|)
]

∆(iωm)√
ω2
m +∆(iωm)

· (2)

In the above equations Z(iωn) = 1 − Σ(iωn)/iωn, where
Σ(iωn) is the normal state electronic self-energy, ∆(iω)
is the Matsubara gap-function and ωn and ωm are
Matsubara fermionic frequencies.

In the above equations, α2F(Ω) is the electron-phonon
spectral function (also known as the Eliashberg function)
which defines the electron-phonon coupling constant λ
and the logarithmic frequency Ωln through the following
relations [21]:

λ = 2
∫

dΩ
Ω
α2F (Ω), (3)

lnΩln =
2
λ

∫
dΩ
Ω

ln(Ω)α2F (Ω). (4)

The dimensionless parameter µ represents the effective
Coulomb repulsion probed by the Cooper pair at the en-
ergy scale ωc which is much larger than the phonon energy
scale. It is clear that the value of the Coulomb parameter
µ depends on the specific value of ωc which is somewhat
arbitrary [24]. In fact a more sound quantity is the pseu-
dopotential µ∗ defined as:

µ∗ =
µ

1 + µ ln (ωc/Ωmax)
, (5)
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Fig. 1. Plot of 2∆/Tc (solid line) and 2∆0/Tc (dashed line) as
function of λ for an Einstein phonon spectrum and µ = 0. In
inset, a zoom of the region around 2∆/Tc = 4.2.

where Ωmax is the maximum phonon frequency. The phys-
ical properties of the superconducting state depend on µ∗

rather than µ or ωc [24]. In the numerical solution of equa-
tions (1, 2) we have set ωc = 5Ωmax. Larger values of ωc

do not modify the results and we have checked that dif-
ferent choices of ωc, although providing different values of
µ as expected, lead to the same µ∗ via equation (5).

The quantities we want to extract from the ME equa-
tions (1) and (2) are the critical temperature Tc, the zero
temperature superconducting gap ∆ and the carbon iso-
tope coefficient αC. To achieve this, we must first choose
the input quantities α2F (Ω) and µ (or µ∗). Of course, the
electron-phonon coupling λ and the logarithmic phonon
frequency Ωln follows directly from a given Eliashberg
function α2F (Ω) via equations (3-4). Our aim is to find
for which values of λ, Ωln and µ∗ the ME equations have
Tc = 30 K, αC = 0.21, and 2∆/Tc = 4.2 ± 0.2 as solu-
tions. We solve numerically equations (1-2) to obtain the
critical temperature Tc and the zero-temperature “Mat-
subara” gap ∆0 = limT→0∆(iωn=0).

The physical gap ∆(T ) can be obtained from ∆(iωn)
via the analytical continuation on the real-axis [25] and
through the relation

∆(T ) = Re [∆(ω = ∆(T ), T )] . (6)

In order to quantify the discrepancy between ∆ and ∆0,
in Figure 1 the physical and Matsubara gaps are plotted
as function of λ for a Einstein phonon model with µ = 0.
The enhancement of ∆ with respect to ∆0 is essentially
driven by the size of the gap itself. An enlargement of
the region relevant for Rb3C60 (2∆/Tc ' 4.2) is shown
in inset of Figure 1. The discrepancy is of order of 2%,
from 2∆0/Tc ' 4.10 to 2∆/Tc ' 4.18. The total effect
is in any case less than the experimental error of ∆ in
Rb3C60 [18]. Numerical solutions of Eliashberg equations
in imaginary-axis therefore provide a quite good determi-
nation even of the physical gap ∆ within the experimen-
tal accuracy available for Rb3C60. Note that the above
discussion holds true even in the presence of Coulomb re-
pulsion and for generic α2F (Ω). As we have pointed out,
discrepancies between ∆0 and ∆ are essentially related

to the size of ∆, and therefore to 2∆/Tc. The physical
gap can be quite small, leading to weak-intermediate cou-
pling phenomenology, even for large values of λ when the
electron-phonon coupling is balanced by a strong Coulomb
repulsion, as is the case for fullerene compounds [1].

Finally, the carbon isotope coefficient αC, defined by

αC = − MC

∆MC

∆Tc

Tc
, (7)

is numerically evaluated by solving the ME equations (1)
and (2) for two values of the carbon mass: MC and MC +
∆MC. For a single component material, it can be shown
that isotope substitution enters the ME equations only
through a scaling factor in the frequency dependence of
the Eliashberg function, namely [21,26]:

α2F (Ω) ≡ F
(√

MΩ
)
, (8)

where M is the element mass. In a two-component sys-
tem, like Rb3C60, the electron-phonon spectral function
α2F (Ω) contains in principle mixed phonon modes involv-
ing C-C, Rb-Rb and C-Rb displacements. The correspond-
ing contributions to α2F (Ω) scale therefore in different
ways with isotope substitution, and one should deal with
partial isotope effects [21,26]. However, inter-molecular
modes involving the alkali ions appear to couple negligi-
bly to electrons in A3C60 systems. Evidence for this con-
clusion comes from the negligible effect on Tc upon iso-
tope substitution of the alkali ions [27], implying that the
electron-phonon spectral function α2F (Ω) does not con-
tain Rb-phonon modes. In addition, the dependence of
Tc on the lattice parameter is identical both by applying
pressure and by chemical substitution of the alkali atoms
[28]. This result points out the marginal role played by
alkali atoms on superconductivity: they mainly tune the
lattice constant by interspacing the buckyballs molecules
and provide charge carriers in the conduction band. But
they do not effectively couple to electrons. Based on this
experimental evidence, we assume the Eliashberg function
α2F (Ω) is determined only by carbon modes. In this case,
using of equation (8) is perfectly justified.

3 Numerical analysis

We are now in the position to analyze the experimen-
tal situation of Rb3C60. We solve numerically the ME
equations for different shapes of α2F (Ω) with the con-
straints given by the measured data of Rb3C60. For the
Eliashberg function α2F (Ω) we use i) a single δ-peak
(Einstein spectrum, model I), ii) a broad spectrum de-
fined by a rectangular function (model II), and iii) a broad
(rectangular) spectrum with an additional low frequency
contribution describing the coupling to the inter-molecular
modes (model III).

3.1 Model I: Einstein phonon spectrum

As a particularly simple but representative case we first
consider a δ-peaked spectrum describing a single Einstein
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Fig. 2. Plot of 2∆/Tc, Ω0, µ and µ∗ as functions of λ as
obtained by the numerical solutions of equations (1-2) with an
Einstein phonon spectrum and with the conditions Tc = 30 K
and αC = 0.21.

phonon with frequency Ω0 and electron-phonon coupling
constant λ:

α2F (Ω) =
λΩ0

2
δ(Ω −Ω0). (9)

The use of a single δ-function α2F (Ω) makes the ME equa-
tions to be characterized just by the three microscopic
parameters λ, Ω0 and µ. Once the critical temperature
Tc = 30 K and the isotope coefficient αC = 0.21 are fixed,
this permits to obtain a one-to-one correspondence be-
tween the value of the ratio 2∆/Tc and a set of λ, Ω0, µ.
The numerical results are shown in Figure 2 where we plot
also the pseudopotential µ∗ obtained from the calculated
µ via equation (5).

The experimental ratio 2∆/Tc = 4.2 ± 0.2, together
with Tc = 30 K and αC = 0.21, is obtained by an electron-
phonon coupling λ = 3.33+0.90

−0.79, an Einstein phonon Ω0 =
Ωln = 350+84

−52 K, bare and screened Coulomb repulsions re-
spectively µ = 1.95+0.68

−0.54 and µ∗ = 0.47+0.03
−0.04, where the er-

ror bars result from the experimental uncertainty of 2∆/Tc

[29]. We note that the obtained value of Ωln is compati-
ble with the low-frequency intra-molecular modes[30] and
that µ∗ ∼ 0.4− 0.5 is close to the most accurate theoreti-
cal estimations [31,32]. However, λ = 3.33+0.90

−0.79 largely ex-
ceeds λ ' 1 which is the estimation most commonly found
in literature [1]. More importantly, as we show later, the
value we have found is too large to prevent lattice instabil-
ities and to ensure the validity of Migdal’s theorem. This
result does not rely on the specific shape of α2F (Ω). As
we show below, different shapes of α2F (Ω) lead to similar
results in terms of λ, Ωln and µ∗.

3.2 Model II: rectangular phonon spectrum

Let us consider now the case of a spectral function with
a finite width. To this end, we schematize α2F (Ω) as a
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Fig. 3. Plot of λ, µ∗, Ωln (left side axes) and Ω0 and µ (right
side axes) as function of the broadening of the phonon spec-
trum∆Ω0/Ω0. Tc, α and 2∆/Tc are fixed to their experimental
values.

rectangle centered at Ω0 and having width ∆Ω0. By using
equation (3), α2F (Ω) can therefore be written as:

α2F (Ω) =
λθ(Ω −Ω0 +∆Ω0/2)θ(Ω0 +∆Ω0/2−Ω)

2 ln |(Ω0 +∆Ω0/2)/(Ω0 −∆Ω0/2)| ,

(10)

where θ is the Heaviside step function. The quantity
∆Ω0/Ω0 parametrizes the finite width: for ∆Ω0/Ω0 → 0
the single Einstein phonon case (model I) is recovered,
while the limit ∆Ω0/Ω0 → 2 corresponds to a constant
α2F (Ω) ranging from 0 to 2Ω0. This latter case should
be considered merely as a mathematical limit with no
physical relevance since, as Ω → 0, α2F (Ω) should
always vanish. The characteristic quantities λ and Ωln

are determined as usual from equations (3) and (4). Note
that Ωln does not coincide with Ω0 as in the Einstein
model, but it is actually given by:

Ωln =

[
Ω2

0 −
(
∆Ω0

2

)2
]1/2

. (11)

Hence, Ωln is always smaller than Ω0 and the equality
Ωln = Ω0 holds true only in the limit ∆Ω0/Ω0 → 0.

The effects of the finite width of the electron-phonon
spectrum are shown in Figure 3, where the quantities
λ, µ∗, Ωln, as well as Ω0 and µ, obtained by requiring
Tc = 30 K, αC = 0.21, 2∆/Tc = 4.2± 0.2, are plotted as
function of the parameter ∆Ω0/Ω0. The error bars cor-
respond to the experimental uncertainty on 2∆/Tc. From
the analysis of Figure 3 some important remarks can be
stated. First of all, we see that λ, µ∗ and Ωln have only a
weak dependence on the phonon spectrum width: this sus-
tains the idea that Tc, αC, and 2∆/Tc depend essentially
only on the “McMillan” parameters λ, µ∗ and Ωln regard-
less of the particular shape of α2F (Ω). Moreover, it shows
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also a lower bound for λ (λ > 2), which, although lower
than the Einstein phonon case, is still outside the range
of validity of Migdal-Eliashberg theory. Note that values
of ∆Ω0/Ω0 > 1.9 represent solutions with phonon spectra
exceeding ∼ 2300 K, which is the largest intramolecular
phonon frequency [1,30], so that they are solutions not
compatible with the real materials.

Further results can be deduced from Figure 3. In fact,
intramolecular phonons in Rb3C60 extends in a range of
energies 393 K< Ω < 2266 K [1,30]. If we assume that all
these phonons couple with equal strength to the electrons,
then this situation would correspond to Ω0 ' 1330 K and
∆Ω0/Ω0 ' 1.4. However, from Figure 3, ∆Ω0/Ω0 = 1.4
corresponds to a phonon spectrum centered at Ω0 '
550 K, which is much lower than Ω0 ' 1330 K. Further-
more, if we keep only Tc = 30 K and αC = 0.21 fixed, then
for Ω0 = 1330 K and ∆Ω0/Ω0 = 1.4 we find 2∆/Tc ' 3.7.
Again, this limiting situation is incompatible with the ex-
perimental data of Rb3C60.

3.3 Model III: rectangular spectrum plus
inter-molecular modes

In the past, the issue of determining if intermolecular
or intramolecular phonon modes are more responsible
for the superconductivity phenomenon in fullerides has
been widely debated. Although an active role of alkali-
C60 phonons has been ruled out by the zero alkali iso-
tope effect [27], intermolecular buckyball modes can in
principle play a not negligible role in the electron-phonon
coupling. Indeed, numerical calculations indicate that the
intramolecular phonons couple relatively strongly to the
conduction electrons [7,8,33–36], but a contribution from
very low-frequency intermolecular modes (librations) has
been claimed to provide a better fit to some experimen-
tal data [6]. In literature, there are examples of numerical
calculations which favour [37] or disfavour [31,38,35] an
important contribution of the intermolecular modes to the
total λ.

In this section we consider the effects of an eventual
intermolecular contribution to the total electron-phonon
coupling. We schematize this contribution by adding a
low-frequency part to the rectangular model of α2F (Ω)
studied above. We do not distinguish between libration (of
typical energy 50 K [6]), and acoustic C60-C60 modes (of
frequency up to ∼ 90−100 K [39]), and treat all the inter-
molecular couplings as a continuum ranging from Ω = 0
to Ω = Ωinter, where we set Ωinter = 100 K as the max-
imum intermolecular frequency. The overall shape of this
low-frequency part is of secondary importance, the only
condition is that it should vanish as Ω → 0 (this en-
sures that the intermolecular contribution of λ is finite,
see Eq. (3)). We have therefore chosen the following ex-
pression for the total α2F (Ω):

α2F (Ω) =

{
AinterΩ 0 ≤ Ω ≤ Ωinter

Aintra Ω0 − ∆Ω0
2 ≤ Ω ≤ Ω0 + ∆Ω0

2
,

(12)
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Fig. 4. Dependence of λ, µ, µ∗, Ωln and 2∆/Tc on the
intermolecular electron-phonon coupling λinter keeping fixed
Tc = 30 K and α = 0.21.

where, from equation (3), Ainter and Aintra are related
respectively to the intermolecular and intramolecular
electron-phonon coupling constants, λinter and λintra, as:

Ainter =
λinter

2Ωinter
, (13)

and
Aintra =

λintra

2 ln |(Ω0 +∆Ω0/2)/(Ω0 −∆Ω0/2)| · (14)

Moreover, form equation (4), the logarithmic frequency is:

Ωln =
(
Ωinter

e

)λinter
λ

[
Ω2

0 −
(
∆Ω0

2

)2
]λintra

2λ
, (15)

where λ = λinter + λintra is the total electron-phonon cou-
pling. In this model, the coupling to the intermolecular
phonons is modulated just by λinter, while Ωinter is kept
fixed at 100 K. Of course, for λinter = 0 the present model
reduces to the previous model II were only intramolecular
modes are taken into account.

Let us start by considering the case in which all the
intramolecular phonons (393 K< Ω < 2266 K, which cor-
responds to Ω0 = 1330 K and ∆Ω0/Ω0 = 1.4) couple
with the same weight to the electrons. We have seen be-
fore that for this limiting case there is no solution compat-
ible with the experimental data of Rb3C60. By switching
on the intermolecular electron-phonon coupling, however,
it is now possible to find a solution which reproduces all
the experimental values of Tc, αc and 2∆/Tc. The be-
haviour of 2∆/Tc, together with Ωln, µ, µ∗, and the to-
tal electron-phonon coupling λ, for fixed Tc = 30 K and
αC = 0.21, as function of λinter is plotted in Figure 4.
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For λinter = 0 we again find 2∆/Tc ' 3.7, while 2∆/Tc =
4.2 ± 0.2 is obtained for λinter = 1.47+0.80

−0.63 which corre-
sponds to λ = 2.85+0.83

−0.65, µ = 0.90+0.14
−0.10, µ∗ = 0.37+0.02

−0.02

and Ωln = 178+99
−50 K. Although now a solution exists for

λinter 6= 0, the corresponding values of λ, Ωln, and µ∗

are of the same order of those extracted by the previous
model I and model II.

Given λinter 6= 0, we have also studied the effect
of the broadening of the intramolecular modes by us-
ing different values of ∆Ω0. For a given ∆Ω0/Ω0, the
frequency Ω0 is adjusted as function of λinter to repro-
duce Tc = 30 K, αC = 0.21, and 2∆/Tc = 4.2 ± 0.2.
The results for ∆Ω0/Ω0 = 1 are shown in Figure 5. The
smaller range of intramolecular phonons leads to solutions
for all intermolecular couplings up to λinter = 0.9. For
λinter = 1.1 the error bars of Ω0 becomes so large that
the maximum phonon frequency Ωmax = Ω0 + ∆Ω0/2
exceeds the highest possible intramolecular phonon en-
ergy (2266 K). In particular, for 2∆/Tc = 4.04 we have
obtained Ω0 = 1930 K (marked by a cross in Fig. 5)
which corresponds to Ωmax = 2895 K. The value of Ω0

for 2∆/Tc = 4.0 would be even higher but too computing
demanding to evaluate exactly.

For ∆Ω0/Ω0 = 0 (Einstein phonon plus intermolecu-
lar contribution) there are solutions also at higher val-
ues of λinter, but for λinter < 0.9 the resulting λ, µ∗,
and Ωln nearly exactly overlap with those of Figure 5.
Hence, compared to the case in which all the intramolec-
ular phonons participate to the coupling (∆Ω0/Ω0 = 1.4

and Ω0 = 1330 K, for which we have found λ = 2.85+0.83
−0.65),

lower values of ∆Ω0/Ω0 tend to give higher values of λ.

4 Breakdown of the adiabatic hypothesis

We summarize in Table 1 the main results obtained by
solving the ME equations (1) and (2) under the different
models of the electron-phonon spectral function α2F (Ω)
defined in Sections 3.1–3.3. For model II and model III
we report the results which give only the lower values of
λ (∆Ω0/Ω0 = 1.9 for model II and ∆Ω0/Ω0 = 1.4, Ω0 =
1330 K, and λinter = 1.47+0.8

−0.63 for model III).

Table 1. Summary of the numerical solutions of the ME equa-
tions for Tc = 30 K, αC = 0.21 and 2∆/Tc = 4.2 ± 0.2. For
Model II and Model III we report only the set of values which
defines lower limits of λ.

Ωln[K] µ∗ λ

Model I 350+84
−52 0.47+0.03

−0.04 3.33+0.90
−0.79

Model II < 398+193
−115 > 0.43+0.03

−0.04 > 2.51+0.81
−0.61

Model III > 178+99
−50 > 0.37+0.02

−0.02 > 2.85+0.83
−0.65

The main result which can be extracted from Table 1
is that, independently of the particular form of α2F (Ω)
considered, the experimental data of Rb3C60 can be so-
lutions of the ME equations only for very large values of
λ. Considering that model I and the lower limits of model
II and model III reported in Table 1 correspond to quite
extreme situations, we estimate λ ' 3 ± 0.8 as the most
plausible value for more realistic shapes of α2F (Ω).

Let us examine now the consequences of this result
and the consistency with the whole ME framework. A
first crucial point is that such high values of the electron-
phonon coupling exceed the maximum allowed λ compat-
ible with the lattice stability. Perturbative calculations of
the phonon propagator show that for λ → 1 the phonon
frequencies at small momenta are renormalized to zero
[40], while recent calculations on the Holstein model pre-
dict the breakdown of the ME expansion at λ > 1.25 [41].
For real materials, it is argued that λ ' 1.5 is a good
estimate of the maximum electron-phonon coupling com-
patible with lattice stability [42]. Note moreover that, even
for λ well below the criterion of lattice stability, the sys-
tem could undergo other kinds of instabilities, like charge-
density-waves, which would prevent superconductivity.
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In addition to the problem concerning the lattice sta-
bility, the results obtained in the last section, when an-
alyzed together with the band structure of Rb3C60, lead
to a serious inconsistency with respect to the validity of
Migdal’s theorem [2]. The use of equations (1) and (2)
implicitly assumes the adiabatic hypothesis according to
which EF � Ωph, where Ωph is the typical phonon fre-
quency and EF is the Fermi energy. In general, the adia-
batic hypothesis ensures that the electron-phonon vertex
corrections, absent in the ME equation, can be neglected
[2]. In fact, according to Migdal, the order of magnitude
of the vertex corrections is at least

P = 2
∫

dΩ
α2F (Ω)
EF

= λ
Ωph

EF
, (16)

where Ωph = 2
λ

∫
dΩ α2F (Ω) [43]. Note however that the

adiabatic condition EF � Ωph does not automatically
give P � 1 since P ∼ 1 could be obtained for λ � 1.
Hence, our results are consistent with the ME theory if
both Ωph/EF and P are negligible.

The electronic band structure of the fullerides is given
by a set of very narrow subbands of width W ∼ 0.5 eV
separated from each other by gaps of order U ∼ 0.5 eV
or larger [1]. For the A3C60 compounds the conduction
t1u subband is half-filled by electrons. Due to coupling
to the phonons, the conduction electrons experience both
intra- and inter-band scatterings. However, the inter-band
electron-phonon couplings have only a negligible effect on
superconductivity because they involve transitions of or-
der W +U ' 1 eV or larger [7]. The relevant bandwidth is
thus that of the t1u conduction band and the correspond-
ing Fermi energy is EF = W/2 ' 0.25 eV = 2900 K. This
value should be compared with the characteristic phonon
frequency scale.

According to (16), in the case of an Einstein phonon
spectrum (model I) the average phonon frequencyΩph re-
duces to Ω0. From the previous results of Section 3.1 we
obtain therefore an adiabatic ratio Ωph/EF = 0.12+0.03

−0.02,
which is moderately nonadiabatic. However, the large
value of λ reported in Table 1 leads to an important con-
tribution of the vertex corrections, as estimated by equa-
tion (16), with a magnitude P = 0.40+0.03

−0.02 far from to be
negligible. The effects on P and Ωph/EF of the broadening
(model II) and of the inclusion of inter-molecular modes
(model III) in α2F (Ω) are reported in Figures 6 and 7,
respectively. For model II, the explicit expression of P
can be obtained from equations (10) and (16) and reduces
to:

P =
λ

ln
(
Ω0 +∆Ω0/2
Ω0 −∆Ω0/2

)∆Ω0

EF
, (model II) (17)

while for model III, equation (12), P becomes:

P =
λinter

2
Ωinter

EF
+

λ− λinter

ln
(
Ω0 +∆Ω0/2
Ω0 −∆Ω0/2

)∆Ω0

EF
(model III).

(18)
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Fig. 6. Adiabatic ratio Ωph/EF (lower line) and Migdal’s pa-
rameter P = λΩph/EF (upper line) as function of the broad-
ening of the phonon spectrum in model II.
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Fig. 7. Adiabatic ratio Ωph/EF (lower line) and Migdal’s pa-
rameter P = λΩph/EF (upper line) as function of the inter-
molecular electron-phonon coupling in model III (∆Ω0/Ω0 =
1.0).

From Figure 6 it is apparent that the broadening af-
fects only weakly the Einsteing phonon results,∆Ω0/Ω0 =
0, at least for ∆Ω0/Ω0 ≤ 1. For larger values of ∆Ω0/Ω0

both P and Ωph/EF increase signaling an even stronger
violation of the adiabatic hypothesis and of Migdal’s theo-
rem. Switching on the low frequency inter-molecular cou-
plings, Figure 7, does not modify appreciably the results
of Figure 6. In fact, the effect of non zero values of λinter is
to shift Ω0 to slightly higher frequencies than for λinter = 0
(see Fig. 5), leading to an almost λinter-independent Ωph.

Summarizing the results obtained forEF = 0.25 eV, we
conclude that Ωph/EF

>∼ 0.12 and P >∼ 0.4 independently
of the shape of α2F (Ω). Hence, the experimental data of
Rb3C60 are not consistent with the ME theory since both
the adiabatic hypothesis, Ωph/EF � 1, and Migdal’s the-
orem, P � 1, are violated.

How much this result depends on the precise determi-
nation of the superconducting gap size? All over our analy-
sis we have consider an experimental uncertainty 2∆/Tc =
4.2±0.2 and we have shown that within this error bars any
attempt to describe the experimental data breaks down
the adiabatic hypothesis. However, recent measurements
by surface-sensitive techniques seem to point towards a
BCS-like value of the reduced gap 2∆/Tc ' 3.53 [44], and
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one could question the validity of our conclusions for such
a small value of ∆. However, the violation of ME theory
is even stronger in this case. As shown in Figure 2 for an
Einstein phonon spectrum (model I), BCS-like values of
∆ need coupling with extremely high phonon energies in
order to reproduce Tc = 30 K and αC = 0.21. In particu-
lar, 2∆/Tc = 3.6 implies Ω0 = 1350 K, corresponding to
an adiabatic ratio Ωph/EF ' 0.46 and to a Migdal’s pa-
rameter P ' 0.49. The failure of ME theory in even more
drastic if broader spectra (models II and III) are consid-
ered. Indeed, as discussed in Section 3, in these cases a
lowest value 2∆/Tc ' 3.7 is obtained and a BCS-like gap
2∆/Tc = 3.53, together with Tc = 30 K and αC = 0.21, is
incompatible with the ME framework.

5 Discussion and conclusions

The critical analysis of the experimental data carried on
in the previous sections has pointed out the inconsistency
of the standard ME theory for Rb3C60. We address now
the origin of such inconsistency in the hypothesis that
phonons are still the mediators of superconductivity in
Rb3C60. To this end, let us consider some existing theoret-
ical calculations of the coupling of the t1u electrons to the
Hg intra-molecular phonon modes. Each phonon mode has
frequency Ωi, i = 1, . . . , 8, and couples to the t1u electrons
via Vi = λi/N0, N0 being the electron density of states per
spin at the Fermi level. In Figure 8 we show a collection
of data taken from various calculations [7,8,33–36], and
for each set of data we have estimated the corresponding
adiabatic parameter Ωph/EF where, from equation (16),

Ωph =
2
λ

∫
dΩ α2F (Ω) =

1
V

8∑
i=1

ΩiVi, (19)

and V =
∑
i Vi. The data refer to different schemes includ-

ing tight-binding, LDA, ab initio etc., and the error bars
stem from the uncertainty in the calculated t1u bandwidth
(we have assumed EF = 0.25± 0.05 eV).

The important point of Figure 8 is that, despite of
the large spread of the values of λ/N0, all these calcula-
tions agree in estimating the adiabatic parameter Ωph/EF

to be larger than about 0.4, so that Migdal’s theorem
breaks down and the whole ME framework is invalidated.
Of course, the reason for such high values of Ωph/EF

stems from the fact that, independently of details, the Hg

phonons have energies ranging from 30 meV to 200 meV
while the conduction t1u electron band has a width of only
W = 0.4− 0.6 eV.

With the exception of few cases (see for example
Ref. [35]) the problem concerning the non-validity of the
adiabatic hypothesis is ignored or, at best, underestimated
and the numerical results are often claimed to provide a
strong evidence that, after all, the fullerene compounds
are standard ME superconductors [45]. Our opinion is in-
stead that such numerical calculations show quite clearly
an evident nonadiabaticity of the electron-phonon inter-
action for which the ME framework is completely inade-
quate. Hence, a correct description of the superconducting
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Fig. 8. Adiabatic parameter Ωph/EF extracted from various
calculations of the intramolecular electron-phonon interaction
in fullerenes.

state in fullerides should be formulated in such a way that
Ωph/EF can assume values larger than zero for which the
electron-phonon vertex corrections, as well as finite-band
effects, must be included from the start. As by-products
of the very small value of EF, also non-constant density of
state effects and strong electron correlations may play a
role in the superconducting properties of fullerides. How-
ever, these effects alone can hardly explain the high values
of Tc while, under favourable circumstances, the electron-
phonon vertex corrections can effectively enhance the pair-
ing interaction [46], leading to an increase of Tc for values
of λ lower than those needed in the ME theory [47].

It would be therefore interesting to test whether and
for which parameter values a theory generalized beyond
Migdal’s theorem can describe the experimental data of
Rb3C60. The accomplishment of this task is outside the
scope of this work. However as shown in reference [23],
preliminary results suggest a positive role of the nonadi-
abatic electron-phonon effects. For example, while in the
adiabatic ME equations a λ = 1 − 4 is needed in order
to reproduce Tc = 30 K and αC = 0.21 for realistic val-
ues of phonon frequencies 300 K <∼ Ωph

<∼ 1500−1800 K,
a much more reasonable λ < 1 is needed in the nonadia-
batic theory of superconductivity where first nonadiabatic
corrections are taken into account [23].

These results are quite interesting since they suggest
that the experimental data of Rb3C60 could be explained
by values of λ much closer to those of the intercalated
compounds of graphite (λ ∼ 0.3). This is an important
remark because the intramolecular phonons in C60 stem
from the carbon-carbon bonds just as the highest phonon
modes of graphite. In this perspective, the large discrep-
ancy between the superconducting critical temperature in
graphite intercalated compounds (Tc ∼ 0.2 K) and in ful-
lerides would come from the difference of the electronic
structures. Graphite compounds have large Fermi ener-
gies locating these materials in the adiabatic regime where
ME equations actually hold, while the small values of EF

of the fullerides give rise to the opening of nonadiabatic
channels enhancing the pairing.
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G. Onida, V. Ponomarev, E. Vigezzi, Chem. Phys. Lett.
286, 350 (1998).

37. G. Chen, Y. Guo, N. Karasawa, W.A. Goddard III, Phys.
Rev. B 48, 13959 (1993).

38. W.E. Pickett, D.A. Papaconstantopoulos, M.R. Pederson,
S.C. Erwin, J. Superconductivity 7, 651 (1994).
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